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Big data + big models = better accuracies
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CTR Model

• Logistic regression (LR)
• LR on SGD/LBFGS – batch
• Follow the regularized leader (FTRL) - online

• Factorization machine (FM/FMM)
• Gradient boosting tree (GBT)
• Deep neural networks (DNN)
• Ensemble



State-of-the-art solution

• GBDT + LR
• DNN + LR



Large-scale optimization

• MPI - Sync
• Spark - Sync
• Parameter Server - Async



Spark: a unified platform

“Hidden Technical Debt in Machine Learning Systems”, Google



Optimization

• L-BFGS
• SGD
• WLS



MLlib logistic regression
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Bottleneck 1
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Bottleneck 2
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Distributed Vector
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Distributed Vector

• Definition:

• Linear algebra operations:
• a * x + y
• a * x + b * y + c * z + …
• x.dot(y)
• x.norm
• …

class DistribuedVector(
val values: RDD[Vector],
val sizePerPart: Int,
val numPartitions: Int,
val size: Long)



L-BFGS
Coefficients: X(k)
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Vector-free L-BFGS
Coefficients: X(k)

Choose descent direction
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Vector-free L-BFGS
Coefficients: X(k)

Choose descent direction
(Two loop recursion)

X(k+1) = alpha * dir(k) + X(k)

Calculate G(k+1) and F(k+1)

Worker Worker Worker Worker

WorkerWorkerWorkerWorker

Driver

Space: (2m+1)*d
Time: 6md

Space: (2m+1)^2
Time: 8m^2
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coefficients: DistributedVectorcoeff0 coeff1 coeff2
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grad0 grad1 grad2 gradient: DistributedVector
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Performance(WIP)
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APIs

val dataset: Dataset[_] = 
spark.read.format("libsvm").load("data/a9a")

val trainer = new VLogisticRegression()

.setColsPerBlock(100) 

.setRowsPerBlock(10) 

.setColPartitions(3) 

.setRowPartitions(3) 

.setRegParam(0.5) 

val model = trainer.fit(dataset)

println(s"Vector-free logistic regression coefficients: 
${model.coefficients}")



Adaptive logistic regression

Number of features Optimization method

less than 4096 WLS/IRLS

more than 4096,
but less than 10 million

L-BFGS

more than 10 million VL-BFGS



Whole picture of MLlib

Application layer
(Ads CTR, anti-fraud, data science, NLP, …)

WLS/IRLS

Optimization layer

Spark core

L-BFGS VL-BFGS

LinearRegression

Machine learning algorithm layer

LogisticRegression MLP …

SGD …



APIs

val dataset: Dataset[_] = 
spark.read.format("libsvm").load("data/a9a")

val trainer = new LogisticRegression()

.setColsPerBlock(100) 

.setRowsPerBlock(10) 

.setColPartitions(3) 

.setRowPartitions(3) 

.setRegParam(0.5)

.setSolver(“vl-bfgs”)

val model = trainer.fit(dataset)

println(s"Vector-free logistic regression coefficients: 
${model.coefficients}")
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Future work

• Reduce stages for each iteration.
• Performance improvements.
• Implement LinearRegression, SoftmaxRegression and

MultilayerPerceptronClassifier base on vector-free L-BFGS/OWL-
QN.
• Real word use case for Ads CTR prediction with billions

parameters and will share experiences and lessons we learned:
• https://github.com/yanboliang/spark-vlbfgs



Key takeaways

• Full distributed calculation, full distributed model, can run
successfully without OOM.
• VL-BFGS API is consistent with breeze L-BFGS.
• VL-BFGS output exactly the same solution as breeze L-BFGS.
• Does not require special components such as parameter servers.
• Pure library and can be deployed and used easily.
• Can benefit from the Spark cluster operation and development

experience.
• Use the same platform as the data size increasing.



Reference

• https://papers.nips.cc/paper/5333-large-scale-l-bfgs-using-
mapreduce
• https://github.com/mengxr/spark-vl-bfgs
• https://spark-summit.org/2015/events/large-scale-lasso-and-
elastic-net-regularized-generalized-linear-models/



Thank You.

Yanbo Liang


