
基于Spark的面向十亿级别特征的
大规模机器学习

Yanbo Liang
(Apache Spark committer @ Hortonworks)



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



Big data + big models = better accuracies



CTR Pipeline

Feature
Selection

Context

Ad

User

Feature
Transform

Feature
Encoding

Feature
Evaluation

Model
Training

Feature

Model
Evaluation

Model
Validation

Model
Staging

Experiment

online
feature

model
base

Experi
ment

CTR as
Service

Real-time
Feature

Calibration



CTR Model

• Logistic regression (LR)
• LR on SGD/LBFGS – batch
• Follow the regularized leader (FTRL) - online

• Factorization machine (FM/FMM)
• Gradient boosting tree (GBT)
• Deep neural networks (DNN)
• Ensemble



State-of-the-art solution

• GBDT + LR
• DNN + LR



Large-scale optimization

• MPI - Sync
• Spark - Sync
• Parameter Server - Async



Spark: a unified platform

“Hidden Technical Debt in Machine Learning Systems”, Google



Optimization

• L-BFGS
• SGD
• WLS



MLlib logistic regression

Initialize 
coefficients

Broadcast coefficients 
to Executors 

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from 
executors to get 

lossSum and 
gradientSum

Handle regularization
and

use L-BFGS/OWL-QN
to find next step Final model 

coefficients

Executors/Workers

Driver/Controller

loop untial converge



Bottleneck 1

Initialize 
coefficients

Broadcast coefficients 
to Executors 

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from 
executors to get 

lossSum and 
gradientSum

Handle regularization
and

use L-BFGS/OWL-QN
to find next step Final model 

coefficients

Executors/Workers

Driver/Controller

loop untial converge



Solution 1
Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from 
executors to get 

final lossSum 
and gradientSum

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from
executors to get
partial lossSum

and gradientSum

Reduce from
executors to get
partial lossSum

and gradientSum



Bottleneck 2

Initialize 
coefficients

Broadcast coefficients 
to Executors 

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Comput loss and 
gradient for each 
instance, and sum 
them up locally

Reduce from 
executors to get 

lossSum and 
gradientSum

Handle regularization
and

use L-BFGS/OWL-QN
to find next step Final model 

coefficients

Executors/Workers

Driver/Controller

loop untial converge



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



Distributed Vector

Driver

[2.5, 6.8, 3.1, 9.0, 0.7, 1.9, 2.6, 8.7, 6.2, 1.1, 5.0, 0.0]

worker0 worker1 worker2 worker3



Distributed Vector

Driver

[2.5, 6.8, 3.1, 9.0, 0.7, 1.9, 2.6, 8.7, 6.2, 1.1, 5.0, 0.0]

[2.5, 6.8, 3.1]

worker0

[9.0, 0.7, 1.9]

worker1

[2.6, 8.7, 6.2]

worker2

[1.1, 5.0, 0.0]

worker3



Distributed Vector

• Definition:

• Linear algebra operations:
• a * x + y
• a * x + b * y + c * z + …
• x.dot(y)
• x.norm
• …

class DistribuedVector(
val values: RDD[Vector],
val sizePerPart: Int,
val numPartitions: Int,
val size: Long)



L-BFGS
Coefficients: X(k)

Choose descent direction
(Two loop recursion)

X(k+1) = alpha * dir(k) + X(k)

Calculate G(k+1) and F(k+1)



L-BFGS
Coefficients: X(k)

Choose descent direction
(Two loop recursion)

X(k+1) = alpha * dir(k) + X(k)

Calculate G(k+1) and F(k+1)

Worker Worker Worker Worker

WorkerWorkerWorkerWorker

Driver

Space: (2m+1)d
Time: 6md



Vector-free L-BFGS
Coefficients: X(k)

Choose descent direction
(Two loop recursion)

X(k+1) = alpha * dir(k) + X(k)

Calculate G(k+1) and F(k+1)



Vector-free L-BFGS
Coefficients: X(k)

Choose descent direction
(Two loop recursion)

X(k+1) = alpha * dir(k) + X(k)

Calculate G(k+1) and F(k+1)

Worker Worker Worker Worker

WorkerWorkerWorkerWorker

Driver

Space: (2m+1)*d
Time: 6md

Space: (2m+1)^2
Time: 8m^2



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



numFeatures

numInstance

partition1

partition2

partition3



numFeatures

numInstance



coefficients: DistributedVectorcoeff0 coeff1 coeff2



coeff2coeff0

coeff0

coeff0

coeff1

coeff1

coeff1

coeff2

coeff2



m
ultiplier02

m
ultiplier22

m
ultiplier12

m
ultiplier01

m
ultiplier00

m
ultiplier11

m
ultiplier10

m
ultiplier21

m
ultiplier20



m
ultiplier02

m
ultiplier22

m
ultiplier12

m
ultiplier01

m
ultiplier00

m
ultiplier11

m
ultiplier10

m
ultiplier21

m
ultiplier20

label0
label2

label1



m
ultiplier0

m
ultiplier2

m
ultiplier1



m
ultiplier0

m
ultiplier2

m
ultiplier1

m
ultiplier0

m
ultiplier0

m
ultiplier1

m
ultiplier1

m
ultiplier2

m
ultiplier2



grad02grad00

grad10

grad20

grad01

grad11

grad21

grad12

grad22



grad0 grad1 grad2 gradient: DistributedVector



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



Performance(WIP)

0

20

40

60

80

100

120

1M 10M 50M 100M 250M 500M 750M 1B

Time for each epoch

L-BFGS VL-BFGS



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



APIs

val dataset: Dataset[_] = 
spark.read.format("libsvm").load("data/a9a")

val trainer = new VLogisticRegression()

.setColsPerBlock(100) 

.setRowsPerBlock(10) 

.setColPartitions(3) 

.setRowPartitions(3) 

.setRegParam(0.5) 

val model = trainer.fit(dataset)

println(s"Vector-free logistic regression coefficients: 
${model.coefficients}")



Adaptive logistic regression

Number of features Optimization method

less than 4096 WLS/IRLS

more than 4096,
but less than 10 million

L-BFGS

more than 10 million VL-BFGS



Whole picture of MLlib

Application layer
(Ads CTR, anti-fraud, data science, NLP, …)

WLS/IRLS

Optimization layer

Spark core

L-BFGS VL-BFGS

LinearRegression

Machine learning algorithm layer

LogisticRegression MLP …

SGD …



APIs

val dataset: Dataset[_] = 
spark.read.format("libsvm").load("data/a9a")

val trainer = new LogisticRegression()

.setColsPerBlock(100) 

.setRowsPerBlock(10) 

.setColPartitions(3) 

.setRowPartitions(3) 

.setRegParam(0.5)

.setSolver(“vl-bfgs”)

val model = trainer.fit(dataset)

println(s"Vector-free logistic regression coefficients: 
${model.coefficients}")



Outline

• Background
• Vector-free L-BFGS on Spark
• Logistic regression on vector-free L-BFGS
• Performance
• Integrate with existing MLlib
• Future work



Future work

• Reduce stages for each iteration.
• Performance improvements.
• Implement LinearRegression, SoftmaxRegression and

MultilayerPerceptronClassifier base on vector-free L-BFGS/OWL-
QN.
• Real word use case for Ads CTR prediction with billions

parameters and will share experiences and lessons we learned:
• https://github.com/yanboliang/spark-vlbfgs



Key takeaways

• Full distributed calculation, full distributed model, can run
successfully without OOM.
• VL-BFGS API is consistent with breeze L-BFGS.
• VL-BFGS output exactly the same solution as breeze L-BFGS.
• Does not require special components such as parameter servers.
• Pure library and can be deployed and used easily.
• Can benefit from the Spark cluster operation and development

experience.
• Use the same platform as the data size increasing.



Reference

• https://papers.nips.cc/paper/5333-large-scale-l-bfgs-using-
mapreduce
• https://github.com/mengxr/spark-vl-bfgs
• https://spark-summit.org/2015/events/large-scale-lasso-and-
elastic-net-regularized-generalized-linear-models/



Thank You.

Yanbo Liang


